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Abstract: Very large geological, geophysical, and petrophysical databases often 
contain multiple data types that must be interpreted for application to subsurface 
modeling.  Significant advances in discovering complex and even nonintuitive 
data relationships could lead to better predictions.  There is a litany of data 
analysis techniques used today, including cluster analysis, principal component 
analysis, discriminant analysis, parametric and nonparametric regression, and N-
dimensional histograms.  Regression techniques and neural networks have in 
common their multivariate combination of predictor variables.  These techniques 
may be good at interpolating within the data boundaries of the training data, but 
may be poor for extrapolation because of the lack of understanding of the 
underlying relationships in the variables.  Alternatively, machine learning and data 
mining technologies including Rough Sets hold the promise of finding data 
category relationships and expressing those in a rule-based language.  This paper 
presents a novel rule induction algorithm derived from these machine-learning 
techniques, developed for reservoir characterization with geological and 
geophysical data.  A set of facies models with systematical changing in the 
geometric features is synthesized.  The geometric features are coded and the 
effective permeability is calculated.  Rules between effective permeability and 
geometric features are deducted by using the proposed technique.  The consistence 
of the deducted rules with those implemented in the data synthesization exhibit the 
effectivity of the proposed technique.  Further a second example of facies 
assignment from wireline logs is used to test the proposed technique.  The 
deducted rules are confirmed by the geologists who spend significant time trying 
to summarize rules from the well logs.  The probability feature of the rules and the 
distingushibility analysis feature of the proposed technique supplied additional 
information for the geologist to reconsider their original distinction among facies. 

1 Background 
The field of data mining [2, 7, 8, 11, 17, 18] has grown in recent years to deal with 
large databases available in different industries, in particular, the financial and 
medical fields.  Data mining is the identification or discovery of patterns in data.  
There are several different types of data mining.  These include classification, 
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clustering (segmentation), association, and sequence discovery.  The main focus 
of classification is supervised induction, that is, inference of rules and 
relationships from large databases.  The aim is to extract knowledge from data, so 
that results not directly in the training data set can be predicted.  The training data 
helps to distinguish predefined classes.  Neural networks [3, 9, 13, 14, 27], 
decision trees [5, 6, 16, 19, 26, 29] and if-then-else rules are classification 
techniques.  A disadvantage of neural networks is that it is difficult to provide a 
good rationale for the predictions made, that is, the rules are not always clear. 
 
Data mining is an interdisciplinary field bringing together techniques from 
statistics, machine learning, artificial intelligence, pattern recognition, database, 
and visualization technologies.  The methods used in data mining are not 
fundamentally different from older quantitative model-building techniques, but are 
natural extensions and generalizations of such methods especially applicable to 
uncontrolled, big real world data.  Like in other fields, petroleum industry 
involves extra large data collection routinely and the data collection is not for 
satisfying the requirement of data analysis purpose.  The subsurface feature and 
the complexity of petroleum reservoir make data collected noisy, imcomplete, and 
redundant, and there are valuable information  remaining undiscovered in the data.  
The genral goal of data mining is to extract implicit, previously unknown, hidden, 
and potentially useful information from raw data.  In many cases traditional 
techniques may not be efficient or not suitable.  For example, strong statistical 
assumptions and the adherence to a specific statistical distribution model may 
make statistical methods not suitable.  The inability to generalize knowledge, 
usually represented in the form of rules, of traditional techniques may not fulfill 
the requirement from industries to derive meaningful relationship of variables 
from raw data.  Data mining as a distinct discipline to attack the challenges of 
deriving knowldge from large database has potential for the knowlegde discovery 
in the petroleun reservoir characterization.  There are applications of various data 
mining techniques to petroleum characterization [1, 4, 12, 15, 28]. 
 
A rule-based algorithm is intended to provide understandable rule-like 
relationships in the data.  A rule is a prevailing quality or state.  Induction is an 
instance of reasoning from a part to a whole.  Rules indicate the degree of 
association between variables, map data into predefined classes, and identify a 
finite set of categories or clusters to describe the data.  The rules support specific 
tasks and are generated by repeated application of a certain technique, or more 
generally an algorithm, on the data.  Rough Sets [17, 20-25, 30, 31] are 
specialized methods for inducing rules.  The essential idea of rough sets is to 
express uncertain knowledge through an approximation space, which is 
constructed as certain sets. 
 
Many other methods, including regression analysis, assume that there is a 
functional form between the predictor and response variables.  These smooth out 
variations and are difficult to apply to multivariate nonlinear responses.  
Discriminant analysis separates samples into groups based on relationships in the 
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training data.  The relations must be linear combinations of variables that are made 
explicit.  N-dimensional histograms are used to delineate a relationship between a 
response and multiple predictors, which preserves the uncertainty in the relation 
by reading the value of the response directly from the set of predictors.  Principal 
components analysis is a popular technique to discover the source of variation 
within the data but again results are expressed as linear combinations of multiple 
variables.  All of these techniques can “fit” the data but might not be good 
predictors and do not provide insight into relationships.  Clustering is a method to 
partition the database into segments where each segment member shares similar 
qualities.  Clustering techniques may include optimization algorithms to determine 
the maximum similarity among members within each group and a minimum 
similarity among members across the groups. 
 
Obvious applications of rule induction in petroleum geological data mining 
include (1) predicting reservoir facies from multiple wireline logs, (2) predicting 
reservoir permeability from wireline logs, (3) predicting reservoir facies from 
multiple seismic attributes, and (4) predicting stratigraphic geometries and spatial 
architecture from quantified analog, outcrop, seismic, and numerical stratigraphic 
data. 
 

2 Rule Induction Algorithm 
In rough set theory, concepts of coverage and accuracy are used to describe 
uncertainty in probabilistic rules.  In practice, every object in the data table may 
lead to a rule.  The challenge is to identify significant rules, that is, accurate rules 
with high frequency of occurrence.  Data mining has no a priori model, that is, no 
functional relationship between the data is assumed. 
 
A feature of geological data is that most rules are probabilistic and not 
deterministic.  Another aspect of geological data is that there are relatively few 
attributes from a classical data mining perspective.  These two considerations were 
used to develop the concepts and terms described below.  A complete definition of 
the terms is in the glossary. 

2.1 Data Table 

Table 1 is a schematic data table for rule induction.  The table has M observations 
and N condition attributes.  Without loss of generality, it is assumed that there is a 
single decision attribute.  Multiple decision attributes merely increase the number 
of rules and the configuration space.  Initially, the condition attributes and 
decision attribute can have different values or categories, which must be 
transformed into discrete codes.  The codes are based on statistical analysis of the 
data for each attribute.  For example, the continuous variable of “gamma-ray 
count” may be transformed into 3 discrete codes of high, average, and low. 
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Table 1. A typical data table for rule induction. 

 ca1 ca2 ... caN-1 caN de
o1 0 2 ... 1 2 1
o2 2 1 ... 1 2 1
... ... ... ... ... ... ...

oM-1 2 2 ... 0 1 0
oM 1 0 ... 2 2 2

ca, condition attribute; de, decision attribute; o, observation; 
N, number of condition attributes; M, number of observations 

 
The number of categorical values that condition attribute i, cai, can take is 

, n),...,1(, Nini = o is the number of categorical value the decision attribute de 
can take.  The number of discrete or categorical values the decision attribute and 
some condition attributes can take is fixed, or will be determined for a problem, 
say n1= 3, but the codes themselves can be different; both {0,1,2} and {5,9,11} are 
valid codes for the three categorical values of attribute 1. 

2.2 Configuration and Data Coverges 

A configuration is a unique combination of the values of condition attributes.  The 

total number of possible configurations is: , where 

is the number of categorical values of condition attribute i.  
Note that some configurations may not appear in the training data table.  Further, 

define  as the cumulative number of configuration up to 

condition attribute .  Configuration index 
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attribute values  from a configuration index j may be retrieved 
easily. 
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Every configuration may lead to potential rules in the system.  Since the decision 
attribute can take no outcomes, there are oN nN × potential rules for the system. 

The occurrence of configuration j with outcome o is counted as C , 

(  and o
oj,

NNjj ,...,1, = ono ,...,1, = ) from the data table.  If  then 
there are no observations in the data table corresponding to that configuration and 
outcome pair.  The number of observations M is: 

,0, =ojC

4 



∑ ∑= =
= N oN

j
n
o ojCM 1 1 ,  

 
The configuration coverage is defined as the total number of observations 
associated with configuration j , i.e.,  

jC

 

N
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The decision coverage is specified as the number of observations associated 
with outcome o, i.e., 

oD

 

o
N
j ojo noCD N ,...,1,1 , == ∑ =

 

 
The relative (configuration) coverage of configuration j, C  is a measure used to 
determine closeness to sufficiency of observations in obtaining a reliable rule. 

is undefined for C  equal to zero for 

j
ˆ

jĈ ,0=j ,1=jC and asymptotic to one as 
the coverage increases: 
 

N
j

j Nj
C
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The definition of relative (configuration) coverage could be different.   
 
The relative (decision) coverage of a decision value, , is a measure of the 
proportion of the occurrence frequency of a configuration and decision outcome 
pair out of the number of observations associated with outcome o, i.e., 
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These relative coverages will be used to adjust the importance of rules.  For 
example, more weight will be placed on decision values with small global 
proportions to avoid cases where C  is small, but is close to .  In such a 
case, this configuration is very important to that decision. 

oj, oD
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2.3 Conditional Probability and Accuracy 

The conditional probability of each outcome value, ),...,1(, onoo = , for 

configuration is defined as: ),...,1(, NNjj =
 

j

oj
jo

C

C
p ,

| =  

 
Since there are n possible decision attribute categories, a probability of 1/  

implies no information.  Any conditional probability different from 1/ entails 

preference in the decision category, i.e., some knowledge.  Specifically, as  

nears 1, configuration j implies decision category o.  A closeness of  to 0 
means configuration j does not lead to decision category o.  Conditional 
probabilities close to 1 or 0 contain equally important information for rule 
induction.  The former leads to a positive rule relating configuration j to a specific 
decision category o and the latter leads to negative rules relating configuration j to 
some other decision category.  For a data system, a 
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 NN  by no conditional 
probability table will be established. 
 
The knowledge conveys by the conditional probability leads us to define a 
measure of accuracy as follows: 
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The accuracy  if 0| =joa ojo np /1| =  (no knowledge); the accuracy 

when we have  equals to 1 (perfect positive rule); and,  

when we have equals to 0 (perfect negative rule).  A graph of accuracy 
versus probability is shown on Figure 1. 

1| =joa jo|p

jop |

1| −=joa

 

 

6 



 
Fig. 1.  Relationship between accuracy and conditional probability. 

 

2.4 Significance 

The significance is defined as a combined measure of the accuracy and coverage, 
which is used to provide a relative ranking to the rules.  The significance is the 
product of the accuracy and the relative configuration coverage: 
 

jojoj aCS |,
ˆ •=  

 
This equation holds for negative accuracy.  For positive accuracy, the significance 
is further modified to account for the relative decision coverage: 
 

ojjojoj DaCS ,|,
ˆˆ ••=  

 
As mentioned above, , is used to account the proportion of occurrence of an 
outcome with a specific configuration to the overall occurrence of that outcome, 
which serves like a normalization factor considering the unequally occurrence of 
decision attribute categories.  Positive accuracy results from occurrence exceeding 
the average occurrence and the scaling using will bring up the importance 
for rules associated with low occurrence outcome categories.  Negative accuracy 
always results from occurrence lower than average level, the scaling factor is not 
applied to avoid bringing the significance towards zero.  For example, a zero 
occurrence leads to negative one in accuracy (perfect negative rule) and 

large negative significance value, applying  will revert it to zero 
significance. 
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2.5 Rule Table 

Rules are the configurations and decision outcome pairs with large positive or 
negative significance.  Positive rules are extracted from the configuration and 
decision outcome pairs ranked from positive 1 to zero by positive significance, 
and negative rules are extracted from the configuration and decision outcome pairs 
ranked from negative one to zero significance.  A practitioner can decide whether 
to assign a threshold for significance.  Positive rules provide evidence for the 
decision outcome and negative rules provide evidence against the decision.  If a 
configuration and decision outcome pair’s significance does not meet the criteria, 
the rule table entry is “missing” for lack of data. 
 
We expect many “missing” entries for rule induction with real data.  The 
“missing” entries will be eliminated or reduced based on compatible rules 
generated from subsets of data variables. 

2.6 Distinguishability 

In a data mining exercise, there is an implicit assumption that all decision 
outcomes are distinguishable from the data.  This assumption is not always true 
and a measure of distinguishability can assist in determining the decision that is 
distinct on the basis of the data table. 
 
 

Table 2. Predicted probability from the rules. 

Observation (m) Predicted probability from the real outcome )~( mo  
1 nppp 12111 ,...,, 1

~o
2 onppp ,22,21,2 ,...,, 2

~o
... ... ...
m onmmm ppp ,2,1, ,...,, 1

~
−Mo

... ... ...
M-1 onMMM ppp ,12,11,1 ,...,, −−− 1

~
−Mo

M onMMM ppp ,2,1, ,...,, Mo~

 
 
Once the rule induction is finished, one can construct a data table like the one 
shown in Table 2.  For each observation in the training data set, a predicted 
probability is assigned by looking for the right configuration j and reading the 
corresponding conditional probability . jop |

 
The data table may be divided into classes with an indicator function: on
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where mo~ is the true outcome category for observation m.   
 
The summation of ind is a counting of all outcomes related to decision 
value o.: 
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The average predicated probability associated with prediction of o is: 
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where is the predicted probability value of observation m having decision 
category o. 

omp ,

 

As approaches 1, prediction is good. As  goes to op̂ op̂
M
D

p o
o = , i.e., the 

global proportion for decision outcome o, there is no information provided by the 
rules. 
 
Therefore, the relative information value for prediction outcome o is defined as:  
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A composite information value can be defined as the average over all outcomes:  
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The expected predicated probability and information measure is used to determine 
whether outcomes o and o’ are distinct. 
 
Let’s consider merging two different decision outcomes o and o’, then we have 

 new decision outcomes and the predicted probability table (like Table 2) 
will be updated.  Updating the predicted probability is straightforward.  We derive 

1−on
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1−on

jop | +
 probability values from the previous  values.  One of them will be 

 when the actual outcome turns out to be o or o’. 
on

jop '|

I

':ooI

':∆ ooI

 
Following the same procedure, new  and the oI  values can be calculated.  If we 

define  as the information value with o and o’ merged, the change in I  is: 
 

III oooo −=∆ ':':  
 

0>  means that o and o’ merged leads to an improved prediction.  Thus, 
one should consider whether to treat outcomes o and o’ together, i.e., as 
indistinguishable, since the given training data table cannot differentiate them.  
One could seek to obtain additional data on a different data type that would 
distinguish those outcomes.  0': <∆ ooI  means that merging the outcomes leads 
to a poorer prediction. Thus, the outcomes should be treated as distinct. 
 
 

 
Fig. 2.  Information changes for lumped/merged decision categories. 

 
 
Lumping or merging could be considered for all possible pairs of outcome values, 
and the I∆ can be tabulated, plotted or ranked from high to low.  The high 
positive values are candidates for merging while the low positive and negative 
values should be kept separate.  The ':ooI∆  table can be visualized as a grayscale 
map.  For example, Figure 2 shows a map of the matrix pairing nine decision 
outcomes from the facies assignment example.  The bigger the I∆ value, the 

higher the distinguishability of outcome pair and the darker the color.  The 
diagonal cells are the pairing of outcomes with themselves and have I∆ values of 
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0.  As shown in the Figure, outcomes 7, 8, 9 are very distinguishable from other 
outcomes. The upper left corner area with positive I∆

(1

values indicate that 

outcomes 1-2, 2-3, and 2-4 are not as distinguishable and might be candidates for 
combination. 

=

N,...,

jop |

2.7 Data or Condition Attribute Value 

The same measure of information can be used to consider the value (importance) 
of condition attributes or sets of condition attributes.  All procedures described 
above are based on the entire data set with all condition attributes, but the 
procedures can be applied to any data subset with partial condition attributes. 
 

For a N condition attribute data set, there are ),2
1∑ =

−
N

l
l
N

N C
1

 (l is the 

number of condition attributes in the subset and l = ) subsets.  For each 
subset, a new data set is derived and the algorithm is applied.  A new set of 
configurations of condition attributes is obtained and  values are calculated 
for every decision category o for a given configuration j.  For each individual 
decision category, the expected predication probability of the occurrence of 
decision category o when given the data entry having decision category o is also 
calculated as well as the information measure.  The information value for each 
subset is, for example, II N =},...,3,2,1{ , for all attributes, }N,...,3,2{I  for 

leaving out condition attribute 1, }2{I  for just attribute 2, etc.  These results can 
be plotted as a graph or tabulated in a table that ranks the value of the condition 
attributes (subsets).  The largest values, or maximums of information in the 
subsets with the same number of condition attributes, would normally tend to 
increase as the number of attributes in the subsets increases.  However, noisy data 
or attributes that do not yield additional information value could reduce I . 

2.8 Completion of Rule Table 

The rule (conditional probability) tables built from the entire data set are not 
complete since there may be no observations for some condition attribute 
configurations and there are some rules have been screened out due to small 
significance.  A complete rule table is necessary for practical usage of rule 
induction algorithm and “missing” entries in the rule table should be filled in.  
Filling “missing” entries in the rule table will be accomplished based on 
significant rule derived from data subsets.   
 
There are many subsets with various number of condition attributes, therefore, it is 
necessary to order the subsets in filling procedure.  This ordering will be based on 
their information value.  The ordered subsets will be considered until all “missing” 
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entries are filled in.  The entries filled from subsets are flagged to indicate the 
subset used. 
 
The utilization of the rules is two-fold: (1) gain insight and make general 
observations from the rule table, and (2) use the conditional probability associated 
with each configuration and decision outcome pair in the conditional probability 
table to model the predictions probabilistically.  These applications will be 
illustrated with two examples. 
 
The probabilities are used in modeling. Of course, there is opportunity to reduce 
uncertainty by incorporating additional data sources in the modeling phase. 
 

3. Implementation 
There are issues related to (1) the physical meaning and subjective understanding 
of the rules, (2) the usage of results, (3) the meaning of a probabilistic prediction, 
and (4) data integration.  The significance has value between -1 to + 1.  In 
principle, the potential rules with largest absolute significance values will be 
chosen as important rules, but there exists ambiguity of how to define big and 
small, e.g., is 0.9 close enough?  When there are –1 and/or +1 in the significance 
list, those rules will be chosen without question.  The others will depend on 
judgment.  Fortunately, we are not concerned with rules in the middle of the list. 
 
The rule induction is only as good as the training data.  But in contrast to other 
techniques, e.g. neural networks, each rule is clear and understandable to a 
practitioner as to its applicability.  Another issue is the selection of categorical 
classes by application of thresholds to a continuous variable.  This could be 
performed by optimization. 
 
The rule induction procedure consists of the following steps: (1) prepare the data 
table and determine optimal classes for the conditioning attributes (discretization), 
(2) enumerate all possible configurations and outcomes, (3) calculate the 
conditional probability, configuration coverage, decision coverage, accuracy, and 
significance, (4) present a table for each outcome ono ,...,1=  with the 
configurations sorted from low to high significance, (5) apply cutoff criteria on 
significance to build a rule table, (6) evaluate information value for the condition 
attributes and/or decision outcome, and (7) fill up the “missing” entries in the rule 
table based on subsets of the conditioning attributes.   
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4 Examples 

4.1 Synthetic Fluvial Channel System 

In fluvial or deepwater depositional setting, the sandy facies occur as sand 
channels with associated levee and crevasse deposits.  For simplicity without loss 
generality, we only consider sand-filled channels embedded with a matrix of shale 
in this example.  The corresponding effective permeability depends on the 
orientation, sinuosity, width, thickness and geometry of the channels.  The 
relationship between these geometric features and the effective permeability are 
rules to be extracted for future use.  For this purpose, channel facies models are 
created with a variety of channel parameters such as orientation, thickness, and 
sinuosity, which are called condition attributes for the rule induction system.  Flow 
simulation is conducted for each generated model and the effective permeability in 
X direction is taken as quality measure (decision categories) of the model. 
 
The synthesized data set consists of the geometrical features of channel sands and 
the associated effective permeability.  An object modeling program, fluvsim in 
GSLIB [10], was used to generate multiple facies models.  The simulation domain 
is a 100 by 100 two-dimensional area.  Three triangular distributions with non-
overlapped value ranges are set for each of the three parameters, i.e., orientation 
(O), sinuosity (S), and width (W) (width/thickness ratio).  Totally, there are 27 
combinations (sets) of the parameter distributions.  For each set of parameter 
distributions, parameters were randomly drawn and 50 facies models were 
generated.  Thus, there are a total of 1350(=50×27) different facies models 
created.  For each facies model, permeability values of 100 and 1 were assigned to 
channel sand and shale, respectively and a flow simulation was conducted with 
no-flow boundaries, using the GSLIB [10] program flowsim.  The effective 
permeability in the X direction was taken as a measure of the quality or 
productivity of each facies model. 
 
The data generated were organized as a data table with 1350 rows, each 
representing one facies model, and 4 columns, where the first three denotes the 
values of three condition attributes, i.e., the orientation (O), sinuosity (S), and 
width (W) (width/thickness ratio) of the channels, and the fourth column was the 
value of the decision attribute, i.e., the effective permeability (K) in X direction.  
  
Figure 3 shows one of 50 facies models for two of 27 parameter distributions.  
Figure 4 shows the composite histogram of effective permeability of the 1350 
facies models and the histograms of effective permeability of 50 facies models 
from the two parameter distributions shown in Figure 3, respectively. 
 
The rule induction method requires that the data be binned into categorical 
variables.  It is reasonable and straightforward to classify the three geometrical 
parameters (condition attributes) into three categories consistent with the three 
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distributions.  The three categorical values of orientation (O) are defined as 2 
(good: azimuth angle of 0 10± , which is aligned with the X direction), 1 
(medium: azimuth angle of 1045 ± ) and 0 (bad: azimuth angle of 90 , 
which is perpendicular to the X direction).  The three categorical values for 
sinuosity (S) are denoted as 2 (high: high deviation 30

10±

5±  and short length of 
units), 1 (medium: medium deviation 520 ± 520 ±  and medium length of 
 units), 0 (low: low deviation 10535 ± 5± and long length of 50 5±  units).  

The three categorical values for width (W) are assigned as 2 (large: 25 ), 1 
(medium: ) and 0 (small: 5

5±
515 ± 10− ).  Columns 2 to 4 of Table 3 list the 

codes of the parameters used in the generation of facies models. 
 
 

Table 3.  Parameter used in facies models generation and the statistic of the 

effective permeability values. 

Noa O S W b mean K Std K Klow Kmed Khigh    c 
1 0 0 0 3.90     1.53       32 (64)     18 (36)     0  (0) 
2 0 0 1 2.22    0.48      49 (98)     1  (2)      0  (0) 
3 0 0 2 1.91     0.31      50(100)     0  (0) 0  (0)     
4 0 1 0 8.50     2.57      4  (8)       46 (92)     0  (0) 
5 0 1 1 5.14    2.53      23 (46)     26 (52)     1  (2) 
6 0 1 2 4.29    2.87      34  (68)    16 (32)     0  (0) 
7 0 2 0 9.40    2.30      1  (2)       49 (98)     0  (0) 
8 0 2 1 9.69    4.26      3  (6)       39 (78)     8  (16 
9 0 2 2 8.16    4.75      14 (28)     30 (60)     6  (12 
10 1 0 0 8.47    2.75      2  (4)       47 (94)     1  (2) 
11 1 0 1 6.94    5.05      23 (46)     21 (42)     6  (12 
12 1 0 2 4.55    4.01      34 (68)     12 (24)     4  (8) 
13 1 1 0 8.21    1.95      0  (0)       50 (100)    0  (0) 
14 1 1 1 7.88    3.28      6  (12)      42 (84)     2  (4) 
15 1 1 2 5.28    3.49      25 (50)     23 (46)     2  (4) 
16 1 2 0 5.02    1.00      5  (10)      45 (90)     0  (0) 
17 1 2 1 5.66    1.76      6  (12)      44 (88)     0  (0) 
18 1 2 2 5.97    2.52      15 (30)     35 (70)     0  (0) 
19 2 0 0 17.46  2.17      0  (0)       2 (4)       48 (96 
20 2 0 1 18.74  4.05      0  (0)       9 (18)      41 (82 
21 2 0 2 21.19  5.80      0 (0)       6 (12)      44 (88 
22 2 1 0 8.66    1.44      0  (0)       50 (100)    0  (0) 
23 2 1 1 8.54    2.64      3  (6)       46 (92)     1  (2) 
24 2 1 2 9.08    4.17      8  (16)     34 (68)     8  (16 
25 2 2 0 3.97    0.77      29  (58)   21 (42)     0  (0) 
26 2 2 1 3.66    1.06      35  (70)     15 (30)     0  (0) 
27 2 2 2 3.23    0.85       42  (84)    8  (16)     0  (0) 

a: index of configuration; b: O, Orientation; S, Sinuosity; W, width; c: KLow, k≤4; KMedium, 4<k<14; 
KHigh, k≥14. 
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Fig. 3.  Example geological models. 

 
The continuous variable of effective permeability has to be discretized into 
categorical values.  The method of binning the permeability data could affect the 
final rule induction results.  For simplicity, three categories were determined for 
the effective permeability by just inspecting the permeability histograms.  
Summary statistics of the effective permeability for the 50 realizations of each 
configuration are listed in columns 5 and 6 of Table 3. 
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Fig. 4.  Left, Composite histogram of efective permeability of overall 1350 facies 

model; histograms of effective permeability of 50 realizations for parameter 

distribution 1 (middle) and 20 (right). 

 
 

Table 4.  The expected rule for the fluvial system. 

Good O (2) and low S (0)    and No matter W  leads to          high K (2) 
Bad O (0) and low S (0)    and No matter W  leads to          low K (0) 
Good O (2) and High S (2) and No matter W  leads to          low K (0) 
Medium O       mostly leads to      medium K 

 
 
The three categories determined for effective permeability are: 2 (high: ), 
1 (medium: ), and 0 (low: 

14≥k
144 << k 4≤k ).  The number of instances and 

proportions of the observations on each of the three decision categories for each 
configuration are tabulated in the last three columns of Table 3.  By inspecting 
Table 3, we can expect certain rules like those listed in Table 4.  Note that the “No 
Matter W” in Table 4 indicates that the width can have any of the categorical 
values. 
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4.2 Facies Assignment from Wireline Well Logs 

This example consists of well logs data and facies assignment from cored wells.  
The purpose of the study is to investigate the potential to use well logs for facies 
assignment in uncored wells. 
 
 

Table 5. Description of facies. 

Facies Description Number 

of Data 
1 Cross-beded medium to coarse-grained sandstaone 158 
2 Medium to fine-grained sandstone 283 
3 Well sorted fine-grained sandstone; shoreface 241 
4 Very fine to fine-grained sandstone 181 
5 Heterolithic: coarse-/fine-grained intervals; sand-filled burrow 117 
6 Transition zone, lower shoreface to inner shelf 77 
7 Muddy v. Fine-grained sandstone and snady shale 62 
8 Very fine sandy shale 70 
9 Shale  27 

 
 
Various well logs data are available including Gamma Ray (GR), Resistivity (Res), 
Bulk Density (BD) and Neutron Activation (NA).  Both Bulk Density (BD) and 
Neutron Activation (NA) are measures of density and the cross over of the 
difference between normalized Bulk Density (BD) and normalized Neutron 
Activation (NA) is important in well log interpretation in industry practice.  
Therefore, instead of using Neutron Activation (NA), the difference of normalized 
Bulk Density (BD) and Neutron Activation (NA) are calculated as a new attribute, 
CROSSOVER (CR).  In addition, we have water/oil/gas zone (Zone) information 
for the wells and we use this piece of information as well.  There are 9 facies 
recognized from cores and Table 5 lists the description of facies.  The depth 
resolution in the wells is 0.5 feet.  After removing missing data, there are a total of 
1216 data points (observations) and the number of observations for each facies 
(decision value) is listed in Table 5 as well.  Figure 5 shows the distribution of the 
four well log attributes of the entire data set. 
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Fig. 5.  Histograms of condition attributes. 
 
 

Table 6. Codes of condition and decision attributes. 

Code 0 1 2 3 4 5 6 7 8 
GR 0-30 30-55 ≥55  
Res  0-1.5 1.5-2.5 2.5-20 ≥20 
BD 0-2.05 2.05-2.30 ≥2.30  
CR + -0.5-0 ≤-0.5  
Zone 0 (water) 1 (Oil) 2 (Gas)
Facies 1 2 3 4 5 6 7 8 9 

GR, Gamma ray; Res,Resitivity; BD,Bulk Density; CR,CrossOver; Zone, Water/Gas/Oil Zone 
 
 
In order to use the rule induction algorithm, the four continuous attributes need to 
be discretized.  This is not a trivial issue and research is ongoing for optimal 
discretization.  We inspected and compared the distributions of the four attributes 
for each individual facies (decision attribute) to decide the discretization.  The 
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discretization of the attributes and the coding are listed in Table 6.  Note that we 
code all the attributes from 0.  Finally a 1216 by 5 data table is constructed for rule 
induction. 
 

5 Results, Conclusion and Discussion 

5.1 Effective Permeability of Fluvial Sandy Channels 

The algorithm was first applied to the 1350 by 4 synthesized channel 
sand/effective permeability data table and 27 configurations of conditioning 
attributes were extracted.  Table 7 lists the configurations of condition attributes, 
the occurrence frequency C , and the significance of decision category o 
when given configuration j.  By construction, all 27 possible configurations of 
condition attributes in this example have equal, non-zero sample coverage, i.e., 

.  This will not necessarily be the case for most data systems in practice. 

oj, ojS ,

50=jC
 
The full set of rules is sorted by significance for each decision category, which is 
listed in Table 8.  The positive rules shown in Table 9 are taken from the top 
portion of Table 8, which has the highest positive significance values.  The 
negative rules as tabulated in Table 10 are taken from the bottom portion of Table 
8, which have the lowest significance values.   
 
The rule set is used to estimate the permeability class of training objects and Table 
11 lists the accurate rate of the classification.  Even though this accuracy rate 
derived from the training set is not a good measure to evaluate the predictability of 
the modeling, it still can provide some indication of the prediction model. The 
rules are quite reliable and predictable.   
 
For this synthesized data set, the training data covers all configurations by 
construction.  Therefore, the rule set is complete from the set with all condition 
attributes and there are no blanks in the rule sets to be filled.  Figure 6 shows the 
information value of all 7 subsets of this synthesized data set and the full set with 
all three condition attributes has the highest information value.  In the situation of 
the full set does not cover all configurations of condition attributes, such 
information values will be used to rank the subsets for retrieving corresponding 
rules from the subsets.  Figure 7 shows the information value change when 
decision classes are lumped/merged pair-wise for the full condition attribute set.  
The diagonal elements set the basis for comparison that corresponds to a situation 
without decision-class lumping.  Off-diagonal elements show the change in the 
information values when the attributes are lumped.  Darker color than the diagonal 
elements indicate an increase in the value of information and those lighter colors 
denote a decrease in the information value.   
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Table 7.  Potential rules for fluvial channel sand data set. 

No Condition Attribute Occurrence  ojC , Significance  ojS ,
 O S W Klow Kmed Khigh Klow Kmed Khigh 
1 0 0 0 32     18 0 0.640 0.000 -1.000 
2 0 0 1 49   1 0 0.980 -0.980 -1.000 
3 0 0 2 50    0 0 1.000 -1.000 -1.000 
4 0 1 0 4     46 0 0.000 0.920 -1.000 
5 0 1 1 23   26 1 0.000 0.000 -0.980 
6 0 1 2 34   16 0 0.680 0.000 -1.000 
7 0 2 0 1    49 0 -0.980 0.980 -1.000 
8 0 2 1 3    39 8 0.000 0.780 0.000 
9 0 2 2 14   30 6 0.000 0.600 0.000 
10 1 0 0 2    47 1 0.000 0.940 -0.980 
11 1 0 1 23  21 6 0.000 0.000 0.000 
12 1 0 2 34  12 4 0.680 0.000 0.000 
13 1 1 0 0    50 0 -1.000 1.000 -1.000 
14 1 1 1 6    42 2 0.000 0.840 0.000 
15 1 1 2 25   23 2 0.500 0.000 0.000 
16 1 2 0 5    45 0 0.000 0.900 -1.000 
17 1 2 1 6   44 0 0.000 0.880 -1.000 
18 1 2 2 15   35 0 0.000 0.700 -1.000 
19 2 0 0 0  2 48 -1.000 0.000 0.960 
20 2 0 1 0  9 41 -1.000 0.000 0.820 
21 2 0 2 0  6 44 -1.000 0.000 0.880 
22 2 1 0 0   50 0 -1.000 1.000 -1.000 
23 2 1 1 3    46 1 0.000 0.820 -0.980 
24 2 1 2 8    34 8 0.000 0.680 0.000 
25 2 2 0 29   21 0 0.580 0.000 -1.000 
26 2 2 1 35   15 0 0.700 0.000 -1.000 
27 2 2 2 42   8 0 0.840 0.000 -1.000 
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Table 8.  Full set of rules sorted according to significance value. 

index ca de ojS , index ca de ojS ,
 

 O S W  O S W  
19 2 0 0 2 0.262 27 2 2 2 1 -0.52 
21 2 0 2 2 0.209 11 1 0 1 2 -0.64 
20 2 0 1 2 0.174 14 1 1 1 0 -0.64 
3 0 0 2 0 0.112 9 0 2 2 2 -0.64 
2 0 0 1 0 0.107 17 1 2 1 0 -0.64 
27 2 2 2 0 0.072 21 2 0 2 1 -0.64 
22 2 1 0 1 0.068 16 1 2 0 0 -0.7 
13 1 1 0 1 0.068 4 0 1 0 0 -0.76 
7 0 2 0 1 0.064 12 1 0 2 2 -0.76 
10 1 0 0 1 0.058 23 2 1 1 0 -0.82 
23 2 1 1 1 0.055 8 0 2 1 0 -0.82 
4 0 1 0 1 0.055 15 1 1 2 2 -0.88 
16 1 2 0 1 0.052 19 2 0 0 1 -0.88 
17 1 2 1 1 0.049 10 1 0 0 0 -0.88 
26 2 2 1 0 0.043 14 1 1 1 2 -0.88 
14 1 1 1 1 0.043 7 0 2 0 0 -0.94 
12 1 0 2 0 0.039 5 0 1 1 2 -0.94 
6 0 1 2 0 0.039 10 1 0 0 2 -0.94 
8 0 2 1 1 0.035 2 0 0 1 1 -0.94 
1 0 0 0 0 0.033 23 2 1 1 2 -0.94 
18 1 2 2 1 0.026 25 2 2 0 2 -1.0 
25 2 2 0 0 0.024 3 0 0 2 2 -1.0 
24 2 1 2 1 0.024 26 2 2 1 2 -1.0 
9 0 2 2 1 0.016 21 2 0 2 0 -1.0 
15 1 1 2 0 0.014 7 0 2 0 2 -1.0 
5 0 1 1 1 0.009 16 1 2 0 2 -1.0 
11 1 0 1 0 0.009 13 1 1 0 2 -1.0 
5 0 1 1 0 0.009 13 1 1 0 0 -1.0 
15 1 1 2 1 0.005 17 1 2 1 2 -1.0 
25 2 2 0 1 0.003 19 2 0 0 0 -1.0 
11 1 0 1 1 0.003 4 0 1 0 2 -1.0 
1 0 0 0 1 0.001 2 0 0 1 2 -1.0 
6 0 1 2 1 -0.04 1 0 0 0 2 -1.0 
18 1 2 2 0 -0.1 22 2 1 0 2 -1.0 
26 2 2 1 1 -0.1 20 2 0 1 0 -1.0 
9 0 2 2 0 -0.16 18 1 2 2 2 -1.0 
12 1 0 2 1 -0.28 6 0 1 2 2 -1.0 
20 2 0 1 1 -0.46 27 2 2 2 2 -1.0 
24 2 1 2 2 -0.52 3 0 0 2 1 -1.0 
8 0 2 1 2 -0.52 22 2 1 0 0 -1.0 
24 2 1 2 0 -0.52       
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Table 9.  The derived positive rules. 

Good O (2)   and low S (0)    and   No matter W   leads to         high K (2) 
Bad O (0)    and  low S (0)    and   large W (2) leads to         low K (0) 
Bad O (0)    and  low S (0)    and   large W (1) leads to         low K (0) 
Good O (2)   and  high S (2)   and   large W 2) leads to         low K (0) 
Good O (2)   and  medium S (1)   and   no matter W  leads to         medium K (1) 
Medium O  and no matter S  and  small W (0) leads to    medium K (1) 
Bad O  (0)      and high S (2) and  small W (0) leads to    medium K (1) 

 
 

Table 10.  The derived negative rules. 

Good O (2)    and medium S (1)    and   small W  never leads to    low K (0) 
Bad O (0)    and  small S (0)    and   large W (2) never leads to    low K (0) 
Good O (2)    and  high S (2)   and   large W (2) never leads to    high K (2) 
Bad O (0)    and  medium S (1)   and   large W (2) never leads to    high K (2) 
Medium O  and high S (2)  and  large W (2) never leads to   high K (2) 
Good O  (2)       and small S (0)  and  medium W never leads to   low K (0) 

 
Table 11. Results of classification. 

   1 2 3 accuracy 
1 353 90 0 79.68% 
2 135 583 17 79.32% 
3 12 27 133 77.33%

 

 
 

 
 

Fig. 6.  Information value of all subsets of condition attributes. 
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Fig. 7.  Information changes for lumped/merged decision categories. 
 
 

5.2 Facies Assignment from Wireline Well Logs 

Theoretically there are 324 )33343( ××××=  configurations of condition 
attributes; however, only 54 configurations have nonzero coverage.  There 
are31  subsets of condition attributes and the complete rule tables are 
obtained from the entire attribute subset supplemented with “missing” entries 
filled with rules from the subsets.  The top plot of Figure 8 shows the ranked 
information measure of all 31 subsets of condition attributes.  The bottom plot of 
Figure 8 shows the ranked information measure within groups of subsets with the 
same number of condition attributes.  Even though there is no universal increase in 
the information measure as the increase of number of condition attributes, the 
largest information in the subsets with the same number of condition attributes 
increases as the number of condition attributes in the subsets increases.  For this 
example, the entire set has the largest information measure; therefore the entire set 
of variables should be used for rule induction. 

)12( 5 −=

 
The complete set of rules and probability table contain 324 lines (configurations). 
In each line, the positive numbers are probability values for decision outcome with 
a significant positive significance and the negative numbers are the probabilities 
for decision outcome with a significant negative significance added a minus sign.  
Table 12 lists several lines of the final rule table filtered by the significance 
threshold and Table 13 lists the same lines in the probability table. The differences 
between these two tables are the effects of the significance thresholds used for 
filtering the rules. 
 
The most significant rules have been compared favorly with the empirical rules 
summarized by geologists who provide the data.  Instead of rigid rules 
summarized by the geologists, for a given set of well logs the rules generated from 
the proposed method not only provide the most likely facies, but also supplied the 
probability to be other facies and the information exclusion to be some facies, 
which would be flexible for the geologist to incorporate their expertise. 
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The rules were applied to the training data set.  Figure 9 presents the rules when 
applied to the training data in one of the wells.  The top plot shows the positive 
rules which are the probabilities of facies appearing along the depth and the 
bottom plot shows the negative rules that are the probabilities of facies unlikely to 
appear. 
 
Figure 10 shows the true cored facies of the training data in Well one (top) and the 
assigned facies based on well logs (bottom). 
 
For this example, the information changes when lumping decision outcome pair 
ise are shown in Figure 2.  The explanation of the distinguishibility has already 
been described previously. 
 
 

 
Fig. 8.  Information of all subsets of condition attributes, top: overall sorted; 

bottom: sorted subset-wisely. 
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Table 12. Rules in the complete rule table. 
No Code of ca Filtered Significance of Decision Values   a cb
1   0  0  0  0  0    .00   .00    .93 .00   .00 .00  .00  .00 .00  3 23   15 
...               ... ... ... ... ...  ... ... ... ... ... ... ... ... ... .. ..  ...
66  0  2  1  0  2  -1.00 -1.00  -1.00 .00   .00 .00  .00  .22  22 4 30   36 
67  0  2  1  1  0   1.00   .00    .00 .00   .00 .00  .00  .00  00 5 31    8 
68  0  2  1  1  1  -1.00   .00    .22 .39 -1.00 .22 -.99  .00  00 4 30   99 
69  0  2  1  1  2    .00   .00  -1.00 .00   .58 .17  .00  .00 -99 4 30   98 
70  0  2  1  2  0   1.00   .00    .00 .00   .00 .00  .00  .00 .00 4 27    8 
71  0  2  1  2  1  -1.00   .00    .00    .36 -1.00 .22  .00  .00 .00 3 23  
72  0  2  1  2  2    .00   .00    .00 .00  1.00 .00  .00  .00 .00 4 30    5 
...               ... ... ... ... ...  ... ... ... ... ... ... ... ... ... .. ..  ...
324 2  3  2  2  2    .00   .00    .00 .00   .00 .00  .00  .00 .00 4 28   11 

CA, Condition attribute; a, level of subset; b, index of subset; c, configuration coverage. 

 
Table 13. Conditional probability in the complete probabaility table. 

No Code of ca Filtered Significance of Decision Values    a b c
1   0   0   0   0   0    .00  .00 .93 .07  .00  .00  .00 .00 .00  3  23   15 
...                  ... ... ... ... ...  ... ... ... ... ... ... ... ... ... .. ..  ...
66  0   2   1   0   2    .00  .00 .00 .02  .14  .19  .19 .22 .22  4  30   36 
67  0   2   1   1   0   1.00 .00 .00 .00  .00  .00  .00 .00 .00  5  31    8 
68  0   2   1   1   1    .00  .11 .22 .39  .00  .22  .01 .02 .02  4  30   99 
69  0   2   1   1   2    .03  .06 .00 .06  .58  .17  .06 .02 .01  4  30   98 
70  0   2   1   2   0   1.00 .00 .00 .00  .00  .00  .00 .00 .00  4  27    8 
71  0   2   1   2   1    .00  .09 .18 .36  .00  .22  .12 .02 .02  3  23  
72  0   2   1   2   2    .00  .00 .00 .00 1.00  .00  .00 .00 .00  4  30    5 
...                  ... ... ... ... ...  ... ... ... ... ... ... ... ... ... .. ..  ...
324 2   3   2   2   2    .09  .27 .00 .27  .36  .00  .00 .00 .00  4  28   11 

CA, Condition attribute; a, level of subset; b, index of subset; c, configuration coverage 

25 



 
Fig. 9.  Positive (top) and negative (bottom) rules applying to well one. 

 
 

 
 
Fig. 10. True facies (top) and assigned facies based on the rules (bottom) of well 

one. 
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5.3 Conclusion 

The proposed technique has been successfully applied in the two example data 
sets.  Some significant rules have been retrieved from the fluvial system example 
which are actually embedded in the data generation.  It is understandable to have 
high effective permeability if the channels and channel complex have a good 
direction, low sinuosity.  Bad direction and low sinuosity or good direction with 
high sinuosity lead to low effective permeability.  The rules for the facies 
assignment from well logs are the facies to be assigned for a given set of well log 
values.  The rule compared favorably with the ones derived by the geologists 
working extensively in the field where data was collected.  The rules provide not 
only the most likely facies for a given set of well log values, but also provide the 
probability to be other facies.  The results from the distinguibilish analysis 
actually supplies hints to the geologist to re-consider the distinction of some 
facies. 

5.4 Discussion 

The proposed algorithm works well for the examples.  The most important 
positive and negative rules are retrieved successfully.  The proposed significance 
definition combines measures of accuracy and coverage and serves as a quality 
measure of rules.  Also, the significance identifies positive and negative rules, 
similar to the positive region and negative region in rough sets. 
 
The proposed rule induction technique is suited to geological data where most 
attributes are significant.  The proposed significance measure can be used in 
combination with other rule induction techniques and serves as a ranking measure 
to identify the most important rules.  In general, however, the algorithm will need 
to be extended to include attribute reduction. 
 
Careful examination of a data table may lead an experienced person to infer 
similar, if not the same rules; however, there are many advantages to automatic 
rule induction.  The procedure works for very large datatables with many 
attributes, it is repeatable, and avoids personal biases.  It could also lead to 
nonintuitive, but meaningful data relations.  The effort in making predictions can 
be greatly reduced. 
 

Glossary 
Accuracy: a measure of the closeness of a conditional probability to 1 or 0. 
 
Condition attribute value: a measure of the value contributed by every possible 
combination of conditioning attributes to a decision outcome. 
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Conditional probability: for each decision outcome and condition configuration 
pair, the fraction of occurrences in the data table out of configuration coverage. 
 
Conditional probability table: a complete table of conditional probability for all 
decision outcome and all condition configuration pairs.   
 
Configuration:  a unique combination of the values taken by the condition 
attributes. 
 
Configuration coverage: the number of observations associated with each 
configuration. 
Data table: table of observed decisions for each instance of the combination of 
conditioning attributes.  The set of conditioning attributes are analyzed through 
basic statistics and clustering so that class assignments can be made. 
Decision coverage: number of observations associated with each decision 
outcome. 
 
Distinguishibility: a measure of distinctiveness between decision outcomes, based 
on the expected prediction probabilities. 
 
Relative configuration coverage: a measure of closeness to sufficiency, defined as 
a proportionality of occurrence frequency of a configuration and decision outcome 
pair related to the configuration coverage. 
 
Relative decision coverage: a measure of the proportion of a configuration and 
decision outcome pair out of the number for that outcome. 
 
Rule table: a table of the positive and negative rules with associated conditional 
probabilities, which are filtered by significance.  
 
Significance: a measure of how an outcome is both sufficient and accurate; in 
practice, a combination of the relative coverage, accuracy, and decision coverage 
that leads to a rule. 
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